p-group, metabelian, nilpotent (class 4), monomial
Aliases: C24.5D4, C23.1C42, C2.3C2≀C4, C23⋊C4⋊1C4, (C23×C4)⋊1C4, (C2×D4).1Q8, (C2×D4).39D4, C4.D4⋊5C4, C23.7(C4⋊C4), C24.18(C2×C4), (C22×C4).35D4, C23.1(C22⋊C4), (C22×D4).1C22, C22.42(C23⋊C4), C23.23D4.1C2, C2.3(C23.D4), C2.12(C23.9D4), C22.1(C2.C42), (C2×C4).1(C4⋊C4), (C2×C22⋊C4)⋊2C4, (C2×D4).43(C2×C4), (C2×C23⋊C4).1C2, (C2×C4).1(C22⋊C4), (C2×C4.D4).5C2, SmallGroup(128,122)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.5D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=a, ab=ba, ac=ca, ad=da, eae-1=acd, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=abde3 >
Subgroups: 336 in 117 conjugacy classes, 32 normal (28 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C23⋊C4, C23⋊C4, C4.D4, C4.D4, C2×C22⋊C4, C2×C22⋊C4, C2×M4(2), C23×C4, C22×D4, C23.23D4, C2×C23⋊C4, C2×C4.D4, C24.5D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2.C42, C23⋊C4, C23.9D4, C2≀C4, C23.D4, C24.5D4
Character table of C24.5D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | 1 | -1 | -i | i | -i | -1 | 1 | -i | i | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | -1 | 1 | i | -i | i | i | i | -i | i | -i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -i | -1 | 1 | i | -i | i | -i | -i | -i | i | i | i | -1 | 1 | -1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | 1 | -1 | i | -i | i | -1 | 1 | i | -i | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | -1 | 1 | -i | i | -i | -i | -i | i | -i | i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | i | -1 | 1 | -i | i | -i | i | i | i | -i | -i | -i | -1 | 1 | -1 | 1 | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | 1 | -1 | -i | i | -i | 1 | -1 | -i | i | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | i | 1 | 1 | i | -i | i | i | -i | -i | linear of order 4 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | i | -i | 1 | 1 | -i | i | -i | -i | i | i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | 1 | -1 | i | -i | i | 1 | -1 | i | -i | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | -1 | -1 | -i | i | i | i | -i | -i | linear of order 4 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -1 | -1 | i | -i | -i | -i | i | i | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | -4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C4 |
ρ24 | 4 | 4 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.D4 |
(2 9)(3 7)(4 15)(6 13)(8 11)(10 14)(17 27)(19 25)(20 24)(21 31)(23 29)(26 30)
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 12)(2 9)(3 14)(4 11)(5 16)(6 13)(7 10)(8 15)(17 31)(18 28)(19 25)(20 30)(21 27)(22 32)(23 29)(24 26)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 32)(2 11 9 8)(3 24 7 20)(4 6 15 13)(5 28)(10 26 14 30)(12 18)(16 22)(17 23 27 29)(19 31 25 21)
G:=sub<Sym(32)| (2,9)(3,7)(4,15)(6,13)(8,11)(10,14)(17,27)(19,25)(20,24)(21,31)(23,29)(26,30), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32)(2,11,9,8)(3,24,7,20)(4,6,15,13)(5,28)(10,26,14,30)(12,18)(16,22)(17,23,27,29)(19,31,25,21)>;
G:=Group( (2,9)(3,7)(4,15)(6,13)(8,11)(10,14)(17,27)(19,25)(20,24)(21,31)(23,29)(26,30), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,12)(2,9)(3,14)(4,11)(5,16)(6,13)(7,10)(8,15)(17,31)(18,28)(19,25)(20,30)(21,27)(22,32)(23,29)(24,26), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32)(2,11,9,8)(3,24,7,20)(4,6,15,13)(5,28)(10,26,14,30)(12,18)(16,22)(17,23,27,29)(19,31,25,21) );
G=PermutationGroup([[(2,9),(3,7),(4,15),(6,13),(8,11),(10,14),(17,27),(19,25),(20,24),(21,31),(23,29),(26,30)], [(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,12),(2,9),(3,14),(4,11),(5,16),(6,13),(7,10),(8,15),(17,31),(18,28),(19,25),(20,30),(21,27),(22,32),(23,29),(24,26)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,32),(2,11,9,8),(3,24,7,20),(4,6,15,13),(5,28),(10,26,14,30),(12,18),(16,22),(17,23,27,29),(19,31,25,21)]])
Matrix representation of C24.5D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 15 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 9 | 9 | 9 |
0 | 0 | 8 | 9 | 8 | 8 |
0 | 0 | 8 | 8 | 8 | 9 |
0 | 0 | 9 | 9 | 8 | 9 |
4 | 0 | 0 | 0 | 0 | 0 |
4 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,8,8,8,9,0,0,9,9,8,9,0,0,9,8,8,8,0,0,9,8,9,9],[4,4,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0] >;
C24.5D4 in GAP, Magma, Sage, TeX
C_2^4._5D_4
% in TeX
G:=Group("C2^4.5D4");
// GroupNames label
G:=SmallGroup(128,122);
// by ID
G=gap.SmallGroup(128,122);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,-2,56,85,120,758,570,521,4037]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=a,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*c*d,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=a*b*d*e^3>;
// generators/relations
Export